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Abstract

The behavior of trimethoprim (TMP) in aqueous solutions containing different concentraggoyafodextrin 3-CD) was characterized
by the solubility method, UV spectrophotometry and differential scanning calorimetry (DSC). The UV spectra enhancement of TMP as result
of complex withB-CD was investigated. Complexation wihCD increase the TMP aqueous solubility and the phase solubility diagram
was A type. Thermodynamic parameters of the complex prod€sa G, AH andAS were determined from the phase solubility diagram
at 298 and 318K, respectively. The experimental results indicated that the complex process was an enthalpy-driven process. Mechanism
the complex of3-CD with TMP was further discussed using the molecular model program. Results showed that the 3,4,5-trimethoxybenzyl
group of the TMP was partly embedded in the cavitgeED.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ity, stability and bioavailability of drugk,9], B-cyclodextrin
(B-CD) is the favorite encapsulation of drugs, for its lower
Cyclodextrins (CDs) are toroidally shaped polysaccha- price and higher productive rate.
rides made up of six to eightglucose monomers connected Trimethoprim (TMP) [2,4-diamino-5-(3,4,5-trimethoxy-
at 1 and 4 carbon atoms. The cavity of CDs is relatively hy- benzyl) pyrimidine, the chemical structure is showRiig. 1],
drophobic compared to water, while the external faces are which has been used clinically either alone or in combination
hydrophilic. They are capable of discerning various types of with a sulfonamide (e.qg., sulfamethoxazole, sulfadiazine, sul-
guest molecules by selectively incorporating such moleculesfamoxole), is a synthetic, broad-spectrum antimicrobial agent
through size and polarity consideratifij. Up to now, sev- which acts as an inhibitor of bacterial dihydrofolate reductase
eral driving forces have been proposed for the inclusion of [10], characterized by a very low aqueous solubility.
CDs with substratel2—4]: hydrogen binding, Van der Waals In this work, we have prepared and characterized com-
force, hydrophobic interaction and the release of ‘high en- plexes of TMP with B-CD, and investigated the vari-
ergy water’ molecules from the cavity. As a result of com- ous physicochemical parameters (equilibrium constants, en-
plex formation, the characteristic properties of the included thalpy, entropy, et al.) of thB-CD and TMP system.
substance, such as solubility, chemical reactivity and spectral
properties will be changed. Thus, CDs have been applied to
several areas of science and technoliagyr]. In the pharma-

ceutical industry, CDs have been used to enhance the solubil- .
2.1. Materials

2. Experimental section

* Corresponding author. Tel.: +86 222 7401 186; fax: +86 222 7401 186. 1rimethoprim (Pharmaceutical grade) was obtained from
E-mail addressIn_john@eyou.com (Y.-H. Zhang). Nanjing Pharmaceutical Factory Co., Lt@-cyclodextrin
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Fig. 1. Chemical structures of trimethoprim.

was purchased from Sigma. All other materials were of an-
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2.6. Molecular model study

The most probable structure of the TMPCD inclusion
complex was determined using the ArgusLab (Version 3.0)
program (Planaria Software). The structures of the TRAP,

CD and TMPB-CD inclusion complex were energy mini-
mized with AM1 (Austin Modell) algorithm.

3. Results and discussion
3.1. UV spectrophotometric analysis

Fig. 2shows UV spectra of TMP in agueous solution con-

alytical reagent grade. These reagents were considered suftaining 8-CD at various concentrations. UV spectrophoto-

ficiently well characterized by the manufacturer to be used
without further purification.

2.2. UV spectrophotometric measurement

A Shimadzu UV-2450 visible spectrophotometer was used
to record absorption spectra. The blank was distilled water

for absorption measurements. Changes in absorbance was

linear to a concentration of 10-50 mg TMP#=0.9989) at
280 nm.

2.3. Phase solubility studies

Solubility measurements were determined according to a
modification of Higuchi and Connoifd 1]. Excess amount
of TMP were added to aqueous solutions containing vari-
ous concentration d8-CD at different temperatures, rang-
ing from 0 to 16 MM at 25C, 0 to 32mM at 45C. The
suspensions were shaken for 10 days at 25 antiC45
respectively. After equilibration, the suspensions were fil-
tered through 0.4hm membrane filters, appropriately di-
luted with distilled water and the total concentration of
the TMP in the filtrate was analyzed by UV absorbance
Spectrum.

2.4. Preparation of solid samples

The solid complexes were obtained from saturated TMP
solutions in the presence @fCD. After equilibration, the
suspensions were filtered through Op4B membrane filters
and the filtrate was dried in hot-air oven at @ The phys-
ical mixtures were manually ground using an agate mortar
and a pestle for 10 min.

2.5. Differential scanning calorimetry (DSC)

DSC measurements were performed using a Shimadzu

metric analysis at lambda maxima of 280 nm show a lin-
ear increase in the absorbance of TMP with a change of
concentration of3-CD. A correlation between the ultravi-
olet absorbance and thig2CD molecular weight(=0.999

at 280 nm) was considered as an evidence of complex for-
mation. No shifting was observed in the lambda maxima of
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DSC-50 (Shimadzu Co., Japan). Samples were hermeticallyFig- 2. UV spectra of TMP in aqueous solution containa@D at various

sealed in aluminum pans and scanned over the temperatur
of 30—270°C at a heating rate of X&/min. The blanks were
o-Al203.

oncentrations at 45 (1) WithoutB-CD; (2) 2.5 mMB-CD; (3) 6.3 mMB-

D; (4) 8.9 mMB-CD; (5) 12.7 mMB-CD; (6) 15.2 mMB-CD; (7) 19.0 mM
B-CD; (8) 21.6 mMB-CD; (9) 25.4 mMB-CD; (10) 27.9 mMB-CD; and (11)
31.7mMB-CD.



372

70

L

6.0

40 1

3.0 n/'/

TMP solubility (mM)

0.0 T T T T T T
10.0 20.0 30.0

beta-CD concentration (mM)

Fig. 3. Solubility diagram of TMP in the presence of different concentration
of B-cyclodextrin at 25C(a) and 45°C(H).

TMP when complex with th@-CD. Thep-CD showed in-
significant ultraviolet absorbance.

3.2. Estimation of apparent stability constant

Fig. 3shows the aqueous phase-solubility of TMP in dif-
ferent concentrations of th&-CD at 25 and 458C, respec-
tively. The solubility of TMP increased with increasifgCD

concentrations. These linear phase diagrams are classified as

AL-type [11] and are considered indicative of the formation

of soluble complexes between the substrate (the TMP) andb =

the ligand (the3-CD). This type of diagram indicates that
the solubility of TMP increased linearity with the increase of
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Table 1

The effect of enhancing solubility for TMB/CD complexes

Temperature®C) S@ (mM) L (mM) 9IR° Solubility
curve typé

25 1.5 29 1.9 A

45 3.0 6.5 2.2 A

2 S: the solubility of TMP in the absence 8fCD.

b s the solubility of TMP in 16 mMB-CD (25°C) or in 32 mM B-CD
(45°C).

¢ Factor of enhancing solubility.

d According to Higuchi and Connof&1].

Eq. (2) can be given an expression fim in terms of
known concentrationsn and n. The total concentration of
TMP can be expressed as K8) or (4):

b=So+x 3)
(4)

A special case of Eq2), that in whichm=1 andn=1, is
of great interest. In this case E¢S) and(6) can be derived.

x=b— 5o

X

Ki1=——-—— 5

1= 00— ®)
SoK1:1

D S 6

1+SoK1:1a+ 0 ©

A plot of bagainstfor the formation of a soluble complex

B-CD concentration, depending on the aqueous solubility of TMP-CD should, therefore, yield a straight line (the Type A

the3-CD.

Suppose that a single complex, TMED, is responsible
for the increase in apparent solubility of TMP. For the com-
plex formation described by Eql), the apparent stability
constankK of the complex is expressed by Hg):

mCD (liquid) + nTMP (liquid)

TMP,CD,(liquid)
x)

(a - mx) (b - nx)

TMP (solid) Sy

)
)

X
(a — mx)™(b — nx)"

wheremandn are stoichiometric coefficients of the reactants
(B-CD and TMP), respectively andb are the total concen-
trations of the-CD and the TMP in solution, respectively,
x is the concentration of the complex TM®Dp,, Kmn is ap-
parent stability constang is the equilibrium solubility of
TMP in the absence @-CD.

Kmn =

Table 2

diagram). The intercept is equal $ and the slope is given
by

SoK1:1
Slope= ——— 7
P 1+ SoK1a ()
Eq. (8) results from Eq(7):
Slope
Kig=——
11 So(1 — Slope) ®

The solubility of TMP in the presence @tCD are pre-
sented inTable 1 A 1.9-fold increase of the apparent solubil-
ity of TMP in 16 mM B-CD at 25°C clearly underlines the
effect of complexation in the liquid state.

3.3. Thermodynamic parameters

The thermodynamic parameters of the inclusion were cal-
culated from theK at 25°C and 45 C, using Eqs(9)+(11)

Thermodynamic parameters for interaction in aqueous solution of TMPRAED

Temperature (K) K112 (M~1) AG; (kJmol1) AS (Imol1K-1) AH; (kJ mol1)P
298 65 -10.3 -32.9 —-20.1
318 39 -9.7 —-32.7 —-20.1

a K.1: apparent stability constant.
b Considering enthalpyAH;) as a constant.
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Fig. 4. DSC curves for: (a3-CD; (b) TMP; (c) physical mixture; and (d)
complex.

[12]:

K> AH(TZ _ Tl) Model B Model C

K1 R .
AG; = —RT; In K; (10) .r_j,
ns _ DHi— AG; 1) “{ZJ

== LN

where K1 and K, are the apparent stability constant
at 25 and 45C, respectively,R is the gas constant
(8.314Imot1 K1), AG, AH andA Sare the standard Gibbs

Fig. 5. Molecular models of TMBACD inclusion: model A, the TMP
is fully embedded in the cavity of th-CD; Model B, only the 3,4,5-
trimethoxybenzyl group of TMP is partly enclosed into {B€CD cavity;
model C, only 2,4-diamino-pyrimidine group of TMP is partly interacted in-
side theB-CD; Model D, only the 3,4,5-trimethoxybenzyl group of TMP is
fully enclosed into th@-CD cavity; Model E, only 2,4-diamino-pyrimidine
group of TMP is fully interacted inside tBeCD.

(b) Model D Model E
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energy change, enthalpy and entropy, respectively. It shouldstructure of the TMH-CD complex based on the energetic
be noted that; is thermodynamic temperature in Kelvin (K).  behaviors of the molecules. Model A was the less proba-

The apparent stability constark)( of B-CD-TMP sys- ble because the structure was energetically unfavorable. The
tem, considering formation of 1:1 complex, were calculated model B was energetically most favorable in five possible
according to Eq(8) and reported ilable 2 Standard ther-  models, in addition, UV spectra of TMR-CD aqueous so-
modynamic parameters, calculated from the temperature de-ution (Fig. 2) at 280 nm shows that the chromophores of the
pendency ofKi.; values within the 25-4%C temperature  TMP are not shielded b-CD. A most possible arrange-
range (able 2, are close to the ones reported ear]iE3]. ment for the complex seems to be model B where 3,4,5-
The results suggested that the complexation process was edrimethoxybenzyl group is partly embedded in the cavity of
sentially enthalpy-controlled and that both dipolar or induced the g-CD.
dipolar and van der Waals interactions between host and guest
molecules are involved in inclusion complexation. A contri-
bution of hydrophobic interactions involve the breakdown References
and displacement of the highly ordered water molecules in-
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